SCALING UP: BATTERY AND ELECTRIC VEHICLE SUPPLY CHAINS

Daniel Harrison

Automotive Analyst

Xeower

OVERVIEW

- ► Global context: Total vehicle sales are expected to fall by ~20% in 2020.
- ▶ However, EVs are in a major scale up mode of ~20% per year, increasing market share.
- ▶ It is primarily EVs that drive battery demand. (EV ~50 KwH. PHEV ~10 KwH. HEV 1 KwH)
- This rapid growth creates challenges in building efficient supply chains.
- Companies will need to remain nimble to thrive amid this scale up.
- Successful EV sales growth is fundamentally reliant upon battery supply chains.
- Therefore efficient battery supply chains can be regarded as a competitive advantage.

GLOBAL LITHIUM BATTERY DEMAND/CAPACITY FORECAST

GLOBAL LITHIUM BATTERY DEMAND/CAPACITY FORECAST

- ► <u>Supply side</u>
- ► Despite Covid, investment in lithium battery plants continues as they take the long view.
- ▶ Production capacity set to reach ~400 GwH in 2020.
- ► However, that is 'maximum' capacity possible and that's also across all industry sectors.
- ▶ 180 GwH is likely to be produced for ECVs in 2020, equating to ~5.5 million ECVs (EV+ PHEV)

► <u>Demand side</u>

- ► Global EV sales volumes are growing at ~20% a year...
- ▶ ...however, the KwH fitted into each vehicle is also increasing at ~5% a year.
- ▶ Therefore plant capacity has to rise slightly faster than vehicle sales volumés at ~25% a year.

PRE-COVID: DRIVERS OF ELECTRIFICATION

- ► CO2 emissions targets for OEMs from 2020/2021 particularly in Europe and China.
- ▶ In response OEMs have put far more low emission vehicles / variants onto the market.
- Government purchase subsidies / tax incentives.
- ► <u>Virtuous circle:</u>

Growing volumes / economies of scale are leading to falling battery prices

Reduces range anxiety and improves consumer confidence in EVs

> This allows OEMs to fit higher capacity batteries which increases range

This brings down the price differential between EVs / ICE vehicles.

POST-COVID: DRIVERS OF ELECTRIFICATION

- Additional factors: Automotive stimulus packages incentivise low emission vehicles.
- ▶ In particular in France, Spain, Germany and Italy but not the UK or the US.
- China has extended EV subsidies but will phase them out over the next 2 years.
- ► <u>Virtuous circle:</u>

And the shorter commutes in cities are where EVs excel. Covid crisis has shifted commuters from public to personal transportation.

> This is especially so in congested cities where there is public transport.

In cities, EVs / PHEVs are often exempt from LEZ / congestion zones.

EUROPE PASSENGER VEHICLE POWERTRAIN FORECAST

EV PHEV Other

EUROPE PASSENGER VEHICLE POWERTRAIN FORECAST

► <u>Short term outlook</u>

- ► In the first half (H1) of 2020, electrically charged vehicles (ECVs) i.e. (EV + PHEV) grew by over 40% but overall vehicle sales fell by -38%.
- ▶ We expect some recovery in overall PV volumes in the second half of 2020.
- ▶ But our European forecast shows overall PV volumes falling by -25% in 2020.

Longer term outlook

- ▶ We expect overall PV volumes to take until 2026 to reach previous 2019 volumes.
- ▶ By 2030, ECVs will account for 25% of sales volumes.
- ► And by 2040, ECVs will dominate with 95% of sales volumes.

WAITING LISTS – SO WHERE IS THE BOTTLENECK?

Pre-Covid Audi was reporting battery supply chain issues with their supplier LG Chem.

Pre-Covid JLR stopped production due to battery shortages.

Pre-Covid Mercedes reportedly cut EQC production levels due to battery supply shortages from LG Chem.

Post Covid: Tesla Model 3 reported sales affected by battery shortages

Model 3 no longer the best selling EV in Europe and overtaken by the Renault Zope

- ► Average waiting time for an EV is ~13 weeks vs. ICE vehicle 7~8 weeks.
- Unexpected surge in demand post-Covid is compounding battery supply shortage as demand is increasingly outstripping supply.
- This demonstrates why battery supply chains are a competitive advantage.

LOCALISATION

- Currently battery supply chains are highly regionalised.
- ▶ When EV volumes were relatively low, it made sense to import battery cells.
- As volumes ramp up, it makes less sense to ship large heavy batteries around the world.
- More localisation aka 'near-shoring' of battery plants shortens supply chain distances.
 - LG ChemPoland, Ohio USCATLGermanyOctoVoltGermany2 plants in Georgia, US
- However, battery components anodes, cathodes still largely sourced from Asia.
- ▶ Raw material supplies still sourced from politically unstable regions (é.g. DRC for Cobalt).

CHALLENGES – INBOUND LOGISTICS

- ► The Covid crisis has unexpectedly accelerated EV / PHEV demand.
- Complexity Batteries can be transported as single cells, modules, or complete packs.
- Complete battery packs are also getting heavier typically weighing 300kg 500kg.
- ► Lithium Ion batteries are defined as "dangerous goods".
- Regulation on transporting batteries varies by region / jurisdiction.

SINGLE SOURCING → MULTI-SOURCING

- ► To mitigate battery supply bottlenecks OEMs have moved towards multi-sourcing.
- Furthermore, OEMs are increasingly regionalising their suppliers for regional markets -
- ► Tesla uses Panasonic for cars destined for NA / Europe, LG Chem for Asia, CATL for China.
- VW uses LG Chem, Samsung SDI and SKI for EU, CATL for China and SKI for NA from 2022,

OEM	Past cell supplier	Future cell suppliers
Tesla	Panasonic	Panasonic, CATL, LG Chem
VW	Samsung SDI	Samsung SDI, SKI, LG Chem, CATL, NorthVolt
PSA	LG Chem	LG Chem, CATL and SAFT in future
Volvo	LG Chem	LG Chem, Samsung SDI, CATL

JOINT VENTURES & ALLIANCES

- ▶ There is an increasing trend for OEMs to have battery plant JVs with cell suppliers.
- ▶ For the cell supplier this reduces their investment cost and gains a reliable customer.
- ▶ In return the OEM gets increased security of supply e.g. Tesla / Panasonic.
- For smaller start-ups, such as Fisker, there is a move towards forming consortiums to achieve the same buying power for batteries as with larger OEMs.

OEM	Battery cell company	Location
Tesla	Panasonic	Nevada
VW	Northvolt	Germany
Groupe PSA / Opel JV Automotive Cell Company (ACC)	SAFT	Two sites in France & Germany
Fisker & consortium of other start-ups	'top 5' player	-

CHALLENGES - FINISHED VEHICLE LOGISTICS

- ► EVs are typically 200-300kg heavier than equivalent ICE vehicles.
- ► Charging infrastructure remains an issue, as EVs need to be delivered charged.

► <u>Road</u>

EVs reduce load factors as car carriers reach the weight limit before the space limit.

► <u>Rail</u>

China still does not accept dangerous goods on trains so EVs cannot be moved by rail across China. Road or sea has to be used instead within Chinese borders.

► <u>Shipping</u>

RO-RO vessels require EVs to be charged. Ports need extensive charging infrastructure.

CONCLUSIONS

- At the industry level, battery supply chains are central to the electrification of the fleet.
- ▶ Post-Covid the pace of EV adoption has accelerated significantly.
- ► For each company, efficient battery supply chains are a clear competitive advantage.
- Localisation is increasing as EV volumes rise leading to rapidly evolving supply routes.
- ► Increasing trend for OEMs to invest in battery plant JVs with cell suppliers.
- ► To mitigate battery supply bottlenecks OEMs have moved from single to multi-sporcing.
- Therefore, exploiting changes in the battery supply chain creates business opportunities.

THANK YOU

- ► <u>Current reports :</u>
- Automotive Headwinds Align Into A Perfect Storm
- Climate Change vs. Carmakers
- Powertrain Forecast To 2030
- ► Automotive Tier Supplier Profit Analysis 2020
- Global New Vehicle Demand Forecast 2020-2030: Covid-19: The Long Road Ahead
- ► <u>Upcoming reports</u>:
- ► ECG Business Intelligence
- Automotive Battery Supply Chain Analysis 2020

